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Abstract 24 

Coastal and riverine flooding is one of the most common environmental hazards that affect billions 25 

of people worldwide. A coupled hydrologic and coastal storm surge simulation is required to 26 

develop an improved understanding of the individual and collective mechanisms that can cause 27 

flooding within watersheds. These simulations are dependent on an accurate digital elevation 28 

model (DEM); however, it is a challenge to include numerical model resolution as fine as 29 

contemporary DEMs due to the enormous computational cost. Therefore, significant vertical 30 

features (VFs) such as roadbeds, levees, railroads, and natural ridges must be identified and 31 

considered in developing the model representation of the DEM since the VFs can affect flow 32 

propagation. PyVF is an open-source program to extract significant VFs from a high-resolution, 33 

bare-earth, LiDAR-derived DEM automatically. This paper introduces the methods and shows the 34 

automated extraction of VFs for a coastal, urban, mountain and beach area. 35 

 36 
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Computer Code Availability 40 

Software name: PyVF (Version 1.2) 41 

Availability: All Python code and testing data for PyVF associated with the current submission is 42 

available through https://github.com/ShuGao7/PyVF.git or 43 

https://doi.org/10.5281/zenodo.4291027 under the GNU General Public License v3.0. Any 44 

updates will also be published on Github and Zenodo. 45 
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1. Introduction 47 

Flooding in coastal regions can be caused by (i) riverine flooding from extreme rainfall runoff; (ii) 48 

coastal surges driven by tropical cyclones or strong onshore winds; or (iii) a compounding of both 49 

processes occurring simultaneous or in close succession (Bevacqua et al., 2019; Bilskie and Hagen, 50 

2018; Santiago-Collazo et al., 2019; Zheng et al., 2014; Zheng et al., 2013). Accurate 51 

representation of the bathymetry (i.e., water depth), topography (i.e., land elevation), and 52 

inundation barriers (e.g., levees, raised roadways, and natural ridges) is fundamental to accurately 53 

simulating floods (Bilskie, 2012; Dube et al., 2010; Gallien et al., 2018; Westerink et al., 2008). 54 

However, a critical challenge for predictive flood modeling is the geometric complexities of the 55 

terrain (Gallien et al., 2014; Xie et al., 2019). Model performance in low-gradient coastal regions 56 

is particularly susceptible to inaccurate topographical representation within computational models 57 

since the land elevation variation can be as few centimeters (Colby and Dobson, 2010; Van de 58 

Sande et al., 2012). 59 

A prerequisite to the numerical flood model is the generation of high-quality structured or 60 

unstructured meshes that permit an accurate representation of complex domain geometry. Finite 61 

element- and volume-based models typically employ unstructured triangular meshes that are 62 

capable of resolving complex coastal domains (Chen et al., 2003; Ham et al., 2005; Namin et al., 63 

2004; Pain et al., 2005; Shen et al., 2006; Xie et al., 2019; Yoon and Kang, 2004). The unstructured 64 

triangular mesh allows users to refine the mesh in critical areas and use coarse resolution in less 65 

sensitive regions such as in deeper bathymetries while maintaining a given computational cost 66 

(Bern and Plassmann, 2000; Hagen et al., 2001; Kim et al., 2014; Marsh et al., 2018; McGuigan 67 

et al., 2015). 68 

In recent years, airborne Light Detection And Ranging (LiDAR) technology has grown more 69 

precise, and high-resolution (< 10 m) data have become increasingly available for supporting 70 

multi-dimensional flood modeling research (Bates et al., 2003; NOAA, 2007). Although the 71 

increasing terrain data resolution may permit an improved description of the bare earth topography, 72 

the unstructured meshes are restricted to a minimum resolution to minimize computational cost 73 

and numerical instabilities (e.g., Courant-Friedrichs-Lewy condition) (Bilskie et al., 2015). 74 

Limiting the resolution results in smoothing out the elevation of natural barriers and anthropogenic 75 

features (e.g., levees and raised roadbeds), which can alter the path of simulated inundation and 76 
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result in an inaccurate solution (Bilskie et al., 2015; Horritt and Bates, 2002; Kim et al., 2014; 77 

Sofia et al., 2014).  78 

Purvis et al. (2008) recognized this shortcoming in model resolution and manually digitized 79 

significant terrain features from UK Ordnance Survey maps to include their peak elevation within 80 

the LISFLOOD-FP inundation model. Bunya et al. (2010) applied the federal levees defined by 81 

USACE-MVN surveys, and the road and railroad crown heights taken from Atlas lidar surveys 82 

into high-resolution ADCIRC hurricane models. They concluded that the model accuracy is 83 

dependent on the high-level grid resolution of the terrain surface. Their efforts demonstrated that 84 

including long and narrow raised features are critical to build accurate flood inundation models. 85 

However, there are limitations in these methods. These limitations include the amount of hand 86 

digitizing and editing, low accuracy in the horizontal placement of crest elevations, a high number 87 

of person-hours, and the potential for errors. In sum, these findings motivate the automated 88 

extraction of significantly raised linear features (i.e., vertical features) from high-resolution terrain 89 

data. 90 

Vertical features (VF) are raised linear features such as roadbeds, railroads, levees, floodwalls, and 91 

natural features that can block flow, conduct flow and redirect flow. The wetting and drying of an 92 

inundation front may differ depending on the unstructured mesh model with or without vertical 93 

features (Bilskie et al., 2015). There have been many studies aimed at automatically extracting 94 

ridge features from high-resolution topographic data. Roberts (2004) applied a method to take the 95 

point where the maximum gradient in a region is steep enough as VF points from LiDAR point 96 

cloud data. Then, anomalous points were manually cleaned and employed as raised feature points. 97 

These raised feature points were incorporated into the coastal flooding analysis. Coggin (2008) 98 

developed an automatic method for extracting VFs from watershed boundaries generated from 99 

LiDAR-DEM data for inclusion in an ADCIRC finite element mesh with special parameters. 100 

Bilskie et al. (2015) followed and expanded the work of Coggin (2008) and Roberts (2004) to 101 

extract VFs and fix them as polylines in an unstructured mesh that was employed in the simulation 102 

of shallow water hydrodynamics for Hurricane Katrina. The research results of Coggin (2008) and 103 

Bilskie et al. (2015; 2020) show that simulations of flood extents and depths are more accurate 104 

when using an unstructured mesh that includes VFs. 105 
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VFs play an essential role in the simulation of storm surge and hydrological flow routing. In 106 

hydrology, watersheds typically define land units, which have boundaries delineated from 107 

topographic high points (Edwards et al., 2015). Zhang et al. (2016) obtained ridges by extracting 108 

the watersheds of the river network since the watersheds correspond to the ridges in many real 109 

scenarios. Most hydrological models (e.g., SWAT, AnnAGNPS, HSPF, GSSHA) delineate 110 

watershed boundaries and topographic characteristics of watersheds using DEMs (Parajuli and 111 

Ouyang, 2013). Wang et al. (2011) predicted the spatial patterns of water yield by a SWAT-Road 112 

model and a SWAT-NoRoad model. The conclusion is that hydrologic effects of raised roads are 113 

important for accurately simulating runoff within a low-relief watershed. Alzahrani (2017) 114 

manually added VFs into a HEC-RAS 2D model and kept water away from the "dry" side of a VF 115 

until the water surface elevation was higher than the VF’s elevation. Griffiths (2010) represented 116 

VFs as embankment arcs that alter the overland surface flow characteristics of a watershed, along 117 

with grid cell edges or elevated grid cells to simulate overbank flow in the GSSHA model. Thus, 118 

it is well-documented in previous efforts that the inclusion of vertical terrain features is critical for 119 

accurate surface water flow in coastal and riverine floodplains.  120 

Most techniques for extracting raised linear features from LiDAR data are concentrated on 121 

breaklines (Coggin, 2008). In surface modeling, breaklines are linear features used to represent a 122 

sudden or abrupt change in the terrain’s smoothness and continuity (Abdullah, 2017) or an 123 

otherwise string of connected points that should be honored by the data triangulation. They are 124 

commonly extracted from Airborne Laser Scanner (ALS) point cloud data, digital orthophotos, or 125 

ground surveyed cross-sections requiring cumbersome manual work (Bodoque et al., 2016; Briese, 126 

2004; Brugelmann, 2000; Wang et al., 2018; Yang et al., 2016). Breaklines are often located at the 127 

toe and shoulder of levees and highways rather than along the highest point of the protruding 128 

feature (where the VFs should be located). In unstructured mesh generation, vertical features are 129 

breaklines considered as polylines or series of edges connected by triangular elements. Vertical 130 

features are used as a reference to form breaklines in unstructured mesh generation to improve the 131 

terrain description. In contrast to breaklines in surface modeling, vertical features are extracted 132 

from DEMs rather than LiDAR point clouds. They have special requirements, including being tall 133 

enough to affect flood propagation, long enough to span the edges of at least one element, and 134 

having an appropriate spatial distribution for the horizontal scale of the unstructured grid to be 135 

designed (Bilskie et al., 2015; Coggin, 2008). 136 
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The work of Bilskie et al. (2015) and Coggin (2008) show the usefulness of the inclusion of VF 137 

for flood models. However, they do point to some shortcomings that should be overcome. First, 138 

their methods require over a dozen parameters that should be manuall adjusted based on the 139 

surrounding terrain. Bilskie et al. (2015) states that future work should focus on parameter section 140 

for varying landscapes and VF-extraction sensitity to hydrodynamic model resolution. In addition, 141 

since their VF extraction methods begin with watershed boundaries, the final VF lines reside along 142 

DEM cell edges rather down the centroid. We aim to address these shortcomings through a revised 143 

VF-extraction algorithm that minimizes the number of parameters while considering various 144 

topographic landscapes from mountains to coastal regions. 145 

This prevous research led to developing an automated VF delineation algorithm method based on 146 

a LiDAR-derived DEM for inclusion in flood inundation models. Section 2 describes the capability 147 

of the developed algorithm and software, called PyVF, and how VFs are delineated. In section 3, 148 

examples of extracted VFs are presented for four study areas in different types of geography to 149 

illustrate the capacity of PyVF for a variety of terrains. Section 4 contains a discussion of the PyVF 150 

method, and section 5 summarizes the research and conclusions. 151 

2. Methods 152 

PyVF is written as a Python version 2.7 script to take advantage of ArcGIS functions through the 153 

Arcpy module. All of the geoprocessing functions of ArcGIS, such as data analysis, data 154 

conversion, and data management can be accessed through Python using Arcpy, which is a Python 155 

site package that integrates ArcGIS with Python(Esri, 2016).  PyVF also includes Numpy (Walt et 156 

al., 2011) for data manipulation and the Python standard Math library (Lundh, 2001). The design 157 

of PyVF is divided into four main tasks: 1) batch processing sub-DEMs; 2) VF target recognition; 158 

3) VF delineation, and 4) post-processing of potential VFs. PyVF produces VFs as a shapefile and 159 

two raster images with attributes, described in sections 2.3 and 2.4. 160 

PyVF, like the method proposed in Coggin (2008) and Bilskie et al. (2015), aims to extract VFs 161 

that are high enough and long enough. Their method evaluates the relative elevation by comparing 162 

the height of a vertex on the watershed boundary line with the height at two perpendicular distances 163 

from the vertex.  According to the height difference, each vertex is declared as “significant” or 164 

“continue”.  If the “significant” vertex is below a ratio (e.g., 35%), the watershed line is eliminated. 165 

The extracted VFs from this previous method are a subset of the watershed boundaries. The path 166 
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of the watershed boundary is along the edge of the DEM cells, and so are the extracted VFs. This 167 

can lead to large height errors when placing mesh nodes on narrow VFs and coarser DEMs. To 168 

reduce the height error in the model and provide more meaningful parameters, an iterative 169 

increasing size moving window method is employed to search for potential VFs cells by 170 

calculating the height trend of all DEM cells in eight directions. The extracted VFs with 171 

meaningful attributes are along the center of the cells.  172 

The flowchart in Figure 1 provides a general description of the PyVF algorithm. The two inputs 173 

of the algorithm are a DEM and a target unstructured mesh element size (ES). The ES also can be 174 

replaced with a constant value. First, the DEM is split into sub-DEM tiles to efficiently utilize 175 

computer memory, useful for large domains with small cell sizes by batch processing. Next, two 176 

rasters, which have the value of � and �ℎ, for all tiles are extracted through the target recognition 177 

(TR) method. Two thresholds of � and �ℎ, ���� and ����	, are used for reducing the VF cell 178 

candidates to avoid weak VF cells and extraneous cell noise. They are defined through the 1.5 x 179 

IQR (interquartile range) rule and explained in the following section. The DEM also serves as the 180 

input to watershed boundary delineation. The extracted watershed boundaries are considered 181 

ridges. The reduced VF cells that coincide with watershed boundaries are potential VF raster. Then, 182 

the potential VF cells continue to be deleted to create a linear feature of a single cell width by a 183 

thinning approach. This is in preparation to convert the linear raster to vertical feature polylines. 184 

Finally, post-processing is performed based on the constraints of the individual modeling study 185 

that will utilize the extracted VFs. For example, when vertical features are applied to an 186 

unstructured mesh model, the element size is required to determine the appropriate length of the 187 

final vertical feature polylines. 188 
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 189 

Figure 1. A flowchart outlining the vertical feature delineation procedure beginning with the 190 

LiDAR-DEM. 191 

 192 

 193 
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2.1 Batch processing 194 

The high-resolution raster datasets across large domains result in large amounts of data and 195 

processing challenges due to the computer memory limitation. Batch processing is a common 196 

method for overcoming memory limitations. There are two methods provided for dividing the large 197 

raster into tiles. Tiles are read into memory, processed and written to disk one by one until the task 198 

is complete. The two methods have a common purpose - to split the DEM so that the data volume 199 

of each sub-DEM region can reside in memory and minimize discontinuities or gaps in the final 200 

mosaicked raster image. 201 

The first batch processing approach is based on customized rectangular polygons shapefile. The 202 

grid polygons used in this research are a net of square polygons. The large region DEM is clipped 203 

into sub-DEM by the polygon shapefile. It should be noted that the side length of each tile in the 204 

polygon shapefile must be a multiple of the DEM cell size, otherwise, there will be gaps between 205 

each tile. The sub-DEM region is called the recognition area as a minimum unit for the following 206 

target recognition method. 207 

Another DEM decomposition approach is dividing the DEM into many tiles from the upper-left 208 

corner according to the DEM coordinate and using coordinates i and j, with (0,0) denoting the 209 

upper-left corner of the DEM. The minimum unit (i.e., the recognition region) is a number of 210 

rectangular i × j tiles where i  is the number of rows j is the number of columns. Each tile is 211 

processed in the target recognition algorithm individually (one by one). This method is better for 212 

manipulating the entire DEM region without creating a grid polygon. 213 

The target recognition method in this research applies a moving window approach. Since the raster 214 

edge cells (e.g., the cells in the top and bottom rows and the left and right columns) do not have 215 

sufficient neighbors. For example, in Figure 2, the center of the moving window is on the cell at 216 

the left edge. The lack of data in the moving window will affect the calculation. If the edge cells 217 

of each sub-DEM cannot be calculated as non-edge cells, apparent discontinuities will result along 218 

the edges of each tile in the final mosaicked image. Hence, a buffer distance around the recognition 219 

area is determined to define an effective area. Effective areas, polygon tiles at a specified distance 220 

around recognition areas, are determined to solve this problem. The role of effective areas is that 221 

when the moving window traverses each recognition area, there is no null-value inside the window 222 
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range. The following section will introduce the method of searching potential VF cells from each 223 

recognition area.  224 

 225 

Figure 2. Recognition area and effective area defined for Batch processing  226 

2.2 Target Recognition 227 

The VF cell recognition method in this research adopts a circular moving window approach, which 228 

has an advantage in directional uniformity over a square moving window (Chang and Sinha, 2007; 229 

Chang et al., 1998; Koike et al., 1995). The centroid of the circular moving window is placed at 230 

the center of each cell. The circular moving window is divided into eight sectors representing eight 231 

directions (e.g., A1 is North, B1 is Northeast) (Figure 3 (a)). The target recognition method 232 

traverses each target DEM cell and aims to find the highest cells in at least one symmetry direction. 233 

The higher elevation cells are identified as potential VF candidates.  234 
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Two parameters: � and �ℎ are calculated by the target recognition method. The first parameter � 235 

is the radius of the moving window. Moving windows can use a fixed-size or iteratively increasing 236 

size. Casas et al. (2012) proposed a method for assessing the structural integrity of levees. This 237 

method relies on the slope calculation based on a 3 by 3 moving window. However, small fixed 238 

moving windows are not always the best choice (Lin et al., 2013). In this research, an iteratively 239 

increasing circular moving window is applied. Hence, the circular moving window expands as 240 

the � value increases. The initial value of � is 1.5 times the cell size. The second parameter �ℎ is 241 

the difference in height between the value of the checked cell with that of the lowest cell. For 242 

example, Figure 3 (b) shows an assumed cross profile of a North-South VF and the “Check cell” 243 

is located on the VF. To the west of “Check cell”, the lowest cell can be found when � is equal to 244 

3.5 cell size. The r in the west and east direction are represented by �� and ��. The �ℎ in the west 245 

direction is �ℎ�. In the east of “Check cell”, the lowest cell is found when � is equal to 5.5 cell 246 

size. The �ℎ in the west direction is �ℎ� . A different value of � will lead to a different value of 247 

�ℎ. This example illustrates that a variable window size is more appropriate for extracting VFs 248 

than a constant size since the width of the VFs is not fixed.  249 

 250 

Figure 3. a) The circle is divided in to eight sectors to present eight directions of a target point to 251 

be examined; b) This is an assumed small-scale cross profile of terrain. The � of lowest elevation 252 

in each direction are different, which can show a variable window size is more appropriate for this 253 

research. 254 

For example, Figure 4 shows a hypothetical large-scale cross-section spanning multiple raised 255 

features to illustrate the desired target cell location for this study. Because the actual terrain is very 256 

complex, there are many possible elevation relationships between the potential VF cells and their 257 
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surrounding points on the same cross-section: (1) The transverse profile is approximately 258 

symmetric and vertex position is very clear (i.e., inversed V-shape) (Figure 4 (b)(d)); (2) The 259 

transverse profile is approximately symmetric and top is wide (i.e., inversed U-shape) (Figure 4 260 

(c)); (3) The transverse profile is asymmetrical and vertex position is very clear (Figure 4 (a)); (4) 261 

The transverse profile is asymmetrical and the top is wide (Figure 4 (e)). The black dots are non-262 

target points and hollow dots are target points in Figure 4. Although the transverse profiles have 263 

different forms, the common feature of the target cells is that they must be the highest point within 264 

a certain distance in a symmetric direction.  265 

 266 

Figure 4. An example large-scale cross profile of terrain. Empty circles are potential VF points 267 

having a variety of elevation relationships with their neighbor points on the cross-section. 268 

The flowchart for the VF recognition method in the E-W direction is presented in Figure 5. The 269 

variables and their descriptions are summarized in Table 1. First, the target recognition algorithm 270 

aims to find the highest cells in at least one symmetrical direction. This is determined by comparing 271 

the elevation of the checked point (��) with the elevation around the checked points (e.g.,��� , 272 

���), that is �ℎ�  and �ℎ�  in the E-W direction. When �  is larger than 1, the �ℎ�  and �ℎ�  is 273 

computed from �� minus  ���� and  ���� , respectively. When the elevation values in one of the 274 

symmetrical directions stop getting lower, that is  ����� (i.e.,  ���� �  �����1 ) or  �����  275 



13 

 

(i.e.,  ���� �  �����1 ) is less than 0 m, each direction must be checked separately to ensure that 276 

this situation in Figure 4 (a, e) is not overlooked. That is, in Figure 4 (a,e), starting from the check 277 

point, after a certain distance of elevation drop, the height remains stable, or even rises, and then 278 

continues to fall. If the calculation loop terminates when the height does not drop further, a smaller 279 

�ℎ is obtained than the �ℎ returned by continuing the calculation. The check point with small �ℎ 280 

value is likely to be filtered out due to the insignificant height difference. A short ascent is allowed 281 

to ensure that the �ℎ is closer to the actual situation and avoid deletion of important VF points. 282 

Taking west direction as an example, this process is achieved by setting the thresholds to two 283 

parameters � and  ����� (i.e.,���� and ������). The ����is employed to limit the distance 284 

of ascent so that the height does not continuously decrease with increasing �.  The ������ limits 285 

the height of each ascent. 286 

 287 

Figure 5. The flowchart for the main vertical feature recognition method. 288 
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Table 1. The variables in the flowchart for the target recognition algorithm in E-W direction.  289 

Variable Description 

� Increase the size of the moving window for the (� � 1)�	 time 

�� The elevation of checked cell 

�� The initial value of � 

����  * The maximum number of �.  

�� The radius of moving window in West direction 

�� The radius of moving window in East direction 

�ℎ� The elevation difference in West direction 

�ℎ�  The elevation difference in East direction 

��� The value of the cells contained in the ��	 ring in the West direction 

���  The value of the cells contained in the ��	 ring in the East direction 

����  The average value of the cells contained in the ��	 ring in the West direction 

����  The average value of the cells contained in the ��	 ring in the East direction 

����� The difference between ���� and �����  

����� The difference between ���� and �����  

������  * For every increase of 1 in r, the maximum height allowed to rise 

� A tolerance that allows stability or rise over a short distance 

����  * The maximum of t. It can be defined by users.  

* The value determined by users 

 290 

The outputs of this portion of the framework are two target recognition raster files and an attribute 291 

table. The values of the two generated rasters are the maximum radius (�) and the maximum height 292 

difference (�ℎ) of the eight directions. The attribute table includes � and �ℎ for each direction. 293 
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For VF cells, � represents how wide and �ℎ represents how high. Users must define two thresholds  294 

����	 (i.e., the minimum �ℎ) and ���� (i.e., the minimum �) to filter raster cells for their study. 295 

That is, all remaining VF cells have �ℎ values greater than ����	 and � values greater than m���. 296 

These VF cells are the input for the following target delineation method. The ����	 is determined 297 

by the 1.5 IQR rule and ���� is recommend to be 2.5 * cell size. The details of the two thresholds 298 

and the recommended values for different study areas will be provided in section 3.  299 

2.3 Target Delineation 300 

Next, the VF raster is converted to feature polylines. The potential VF cells identified from target 301 

recognition are more than the desired VF cells as this is the first phase in VF delineation. Raster 302 

cells of potential VF points that do not meet required criteria (i.e., not high enough) are removed 303 

based on values of � and �ℎ. The remaining potential VF cells form wide and linear raster cells or 304 

even blocks of raster cells. Specific examples and values of r and dh are discussed in the following 305 

sections.  306 

There is an assumption that significant barriers to surge propagation will be captured as watershed 307 

boundaries (Bilskie et al., 2015). Some programs (e.g., TauDEM, GDAL, ESRI’s ArcHydro 308 

extension) were developed to delineate watershed boundaries from DEM (Kraemer and Panda, 309 

2009; Tarboton, 2005). Through establishing flow direction, linking flow path, and calculating 310 

flow accumulation based on a DEM, cells with a flow accumulation value of zero generally 311 

correspond to watershed boundaries. Also, it is impossible to point out which of the two adjacent 312 

cells that share the watershed boundary is higher. Hence, the watershed boundaries are buffered 313 

by a distance of one cell size on both sides. However, the potential raster cells covered by the 314 

buffered watershed boundary is desired.  315 

At this stage, the width of the linear potential VF raster is two cell sizes at a minimum. When 316 

generating VF polylines it is necessary to reduce the number of cells to create a linear feature of a 317 

single cell width. This is accomplished by using a thinning (i.e., skeletonization) approach (Davies 318 

and Plummer, 1981; Naccache and Shinghal, 1984; Zhan, 1993; Zhang and Suen, 1984). The 319 

thinned linear raster can then be converted to polyline by ArcGIS or similar GIS software. 320 

Therefore, the VF polylines reside along the centroid of raster cells and not on the edge. 321 

 322 
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2.4 Post-processing 323 

Post-processing is required depending on the research objective. The main purpose of our VFs 324 

extraction method is to help guide the unstructured finite element mesh generation for a flood 325 

inundation model. Therefore, post-processing focuses on retaining sufficiently long VFs relative 326 

to the element size, including removing shorter VFs and bridging the gap between VFs. This is to 327 

facilitate the placement of nodes (and element edges) along the VF lines. For example, the 328 

ADvanced CIRCulation (ADCIRC) model employs unstructured finite element meshes that are 329 

widely used for predicting storm surge-generated coastal inundation across normally dry regions 330 

(Bhaskaran et al., 2014; Bilskie et al., 2016; Bilskie et al., 2014; Bunya et al., 2010; Dietrich et al., 331 

2011; Gayathri et al., 2016; Luettich, 1992). If the length of the extracted VF is less than the length 332 

of the desired local element size, it is not possible to directly include it in the mesh. Therefore, VF 333 

lines with lengths less than the desired local mesh size must be removed. Additionally, there may 334 

be small gaps in the VFs that should be connected. Further details are described in the following 335 

section. 336 

3. Applications of PyVF 337 

This section highlights some applications of the PyVF methods. PyVF is employed to extract VFs 338 

from four distinct landforms: low-gradient coastal region, urban region, mountain region, and 339 

beach region. For all regions, the values of the parameters in target recognition and target 340 

delineation methods are recommended. Table 2 summarizes the description and values of the 341 

parameters in the four study areas. The application of batch processing is described in the mountain 342 

region. The cases requiring post-processing are illustrated in the low-gradient coastal region. 343 

Table 2. Summary of PyVF parameters and respective values used in four distinct landforms 344 

Variable Description Reference 

Study Area 

Low-gradient 

coastal  

Urban  

 

Mountain  

 

Beach 

 

����	  (m) Minimum height difference 1.5 IQR rule 

 

0.2 

 

1 50 1.5 

���� (m) Minimum radius 

 

2.5*cell size 

 

7.5 7.5 25 25 

T Minimum number of cells 

that constitute a stream 

Trial and error 5000 1000 10000 100 

 345 
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3.1 Low-gradient coastal region area 346 

Low-gradient coastal areas have a higher probability of flooding from storm surges and prolonged 347 

torrential precipitation than regions with higher elevation gradient terrains. Moreover, especially 348 

in low-gradient regions, the potential of more destructive flooding from compound events is often 349 

higher than the occurrence of a single event (Bevacqua et al., 2019; Ikeuchi et al., 2017; IPCC, 350 

2013; Moftakhari et al., 2017; Nicholls et al., 2007). This region is difficult to model due to the 351 

complicated flows of coastal storm surges, rainfall-runoff and fluvial flooding that can occur in 352 

combination (Bilskie and Hagen, 2018; Santiago-Collazo et al., 2019). 353 

The low-gradient coastal study area displayed in Figure 6 is a part of the Lake Maurepas watershed 354 

in southeastern Louisiana. Figure 6 shows the aerial imagery draped over a 3-m resolution LiDAR 355 

derived topo-bathymetric DEM provided by U.S. Geological Survey (USGS). Some roadbeds and 356 

natural barriers that can alter the path of flood flow are shown in the figure. The elevation in this 357 

area ranges from -0.5 m to 11.7 m (NAVD88). 358 

 359 

Figure 6. Aerial imagery draped over a 3-meter resolution topo-bathymetric digital elevation 360 

model in southeastern Louisiana. 361 
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The elevation difference �ℎ, which is a result of the target recognition method, is shown in Figure 362 

7 (a)(a’). The darker the color, the larger the elevation difference. The VFs of interest have a larger 363 

elevation difference. However, there is a large amount of VF cells with small elevation difference 364 

(i.e.,�ℎ). These cells are not regarded as potential vertical features. Hence, ����	 is the major 365 

parameter to provide a threshold to identify the VF cells.  366 

Some geomorphometric parameters such as slope, curvature, elevation residual and entropy are 367 

used in terrain analysis to extract vertical features (Hiller and Smith, 2008; Sofia et al., 2014; 368 

Tarolli et al., 2010). The ����	 has the similar core idea with elevation residual (ER), that is, to 369 

filter low-relief plains in local scale. The ER is calculated as following equation. 370 

�" = �$�% � �&�'()_�                                                                                                                (1) 371 

where �&�'()_� is the average elevation of cells within a moving window with a fixed size �+��_�, 372 

which is the average � of the entire study area, and �$�% is the elevation of the cell in the center 373 

of the moving window.  374 

The statistical IQR is used to define the threshold value of geomorphometric parameters (Hiller 375 

and Smith, 2008; Sofia et al., 2014). Therefore, the IQR is feasible to analyze �ℎ. The VF cells 376 

can be regarded as the outliers of the entire DEM cells. The ����	 should satisfy the condition: 377 

,-" = -3 � -1                                                                                                                               (2) 378 

����	 > -3 + � ∗ ,-"                                                                                                                               (3) 379 

where Q1 is the first quartile, Q3 is the third quartile, and n is a parameter defined by users.  380 

1.5 IQR (i.e., � = 1.5) is the commonly used rule to define outliers. In this region, the ����	 in 381 

1.5 IQR rule is about 0.2 m (Figure 13). A value greater than 0.2 can be considered as a ����	 382 

value, and the upper limit is recommended not to exceed the average value of outliers (~0.6 m). 383 

Since the width of VFs in this study is not regarded as an important indicator for VF extraction, 384 

the selection of minimum � is only used to delete those discrete local high cells. Hence, the value 385 

of minimum r is related to the resolution of DEM, which is generally 2.5 (i.e., (initial r) +1) times 386 

the cell size. The potential VF raster image using 0.2 m ����	 and 7.5 m ����  (i.e., 2.5 cell 387 

size*3m) is shown in Figure 7 (b) (b’). To avoid noise, the value of the parameter ����	 is selected 388 

as 0.5 m and ���� is 7.5 m (Figure 7 (c) (c’)). 389 
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 390 

Figure 7. a) The raster image with the value of �ℎ in low-gradient area. a’) A zoom-in of the raster 391 

image a. b) The potential VF raster image with the value of min�	 is 0.2 m and the value of min�  392 

is 2.5 cell size in low-gradient area. b’) A zoom-in of the raster image b. c) The potential VF raster 393 

image with the value of min�	 is 0.5 m and the value of min�  is 2.5 cell size in low-gradient area. 394 

c’) A zoom-in of the raster image c. 395 

As previously mentioned, the extracted cells are wide and difficult to convert to lines. The potential 396 

VF cells are delineated with the aid of watershed boundaries (Figure 8). A threshold (T) that 397 

represents the minimum contributing cells in the drainage network needs to be selected. If the 398 

threshold is too small, the flow accumulation will be too short, resulting in more watersheds and 399 

short watershed boundaries. Conversely, if the threshold is too large, some important watershed 400 

boundaries will be omitted. The process of selecting the threshold is conducted through trial and 401 

error, while iterating on target recognition results. Four thresholds are chosen: 20000 cells, 10000 402 

cells, 5000 cells and 2000 cells. The watershed boundaries generated by the accumulated flow 403 
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threshold of 5,000 is determined suitable for the VF extraction. The delineated watershed 404 

boundaries are along the edge of the cells. There is no method to determine whether the watershed 405 

boundary lies to the right or left of the potential VF cells. So the watershed boundaries (polylines) 406 

are buffered by one cell size distance on both sides. The potential VF cells that overlap with the 407 

watershed boundary buffer (polygons) are extracted.  Then a linear feature of a single cell width 408 

for generating polyline by a thinning approach. The polylines converted from the thinned raster 409 

cells are the initial set of VF lines (Figure 9).  410 

 411 

Figure 8. Watershed boundaries with a 5,000 accumulation flow threshold. 412 

For inclusion in the mesh generation processes, the VFs should be further processed to remove VF 413 

lines shorter than the minimum element size and to connect small gaps. For example, the VFs 414 

shown in Figure 9 (a) are shorter than the surrounding desired mesh element size and, therefore, 415 

deleted. Additionally, there may be small gaps in the VFs that should be connected (Figure 9 (c)). 416 

Gaps should remain intact when a river flows through a VF (Figure 9 (d)). In addition, VF polylines 417 

that have a large bend at the end are not conducive to mesh generation. (Figure 9 (e)). Also, parallel 418 

VF lines that have a separation distance within a given element size should be compared to decide 419 

which should be kept (Figure 9 (b)). Closed loops caused by thinning are cleaned (Figure 9 (f)). 420 

As a result of the automated post-processing routines, a cleaner and more meaningful set of VF 421 

lines are produced for mesh generation (Figure 10 (a)). Furthermore, the location of the extracted 422 
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VFs is along the centroid of raster cells as opposed to watershed boundaries that are on the edges 423 

of raster cells (Figure 10 (b)). 424 

 425 

Figure 9. Examples of potential VFs requiring post-processing. (a) Lines shorter than element size; 426 

(b) Adjacent parallel lines; (c) small gaps between potential VFs; (d) small gaps with a river 427 

flowing through it; (e) a line with a large sinuosity at the end; (f) closed loop 428 
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 429 

Figure 10. a) Vertical features after post-processing for low-gradient coastal area location. b) 430 

Comparison of a watershed boundary and a vertical feature 431 

3.2 Urban Area 432 

VF extraction using PyVF was also tested for an urban area – Port Allen and Baton Rouge, 433 

Louisiana (Figure 11 (a)). The Mississippi River passes through the study region. The USGS 3-m 434 

resolution LiDAR topo-bathymetric model was used as the source DEM Figure 11 (b). The 435 

elevation of Port Allen is substantially lower than that of Baton Rouge, however, the average 436 

elevation differences within each city are small. The 1.5 IQR of the �ℎ is about 0.66 m (Figure 437 

14). The Figure 11 (c) shows that there are many potential VF cells in the Mississippi River region. 438 
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Then the ����	  and ����  are set to 1 m and 7.5m. In other words, the value of recognized 439 

potential raster cells with an elevation greater than 1 m and the r is greater than 7.5 m (Figure 11 440 

(d)).  441 

The watershed boundaries are generated with an accumulated flow threshold of 1,000 (Figure 11 442 

(e)). Through post-processing, the VFs derived from PyVF with lengths greater than 200 m are 443 

retained. The black dotted line shown in Figure 11 (f) (g) is the Mississippi River east and west 444 

bank levees obtained from Nation Levee Database. It is obvious that levees are extracted and there 445 

are many non-levee VFs that can impact flow path in this area, especially in the Port Allen area. 446 

 447 

 448 

Figure 11. a) Location map of urban area in Louisiana. b) The DEM in urban area. c) The potential 449 

VF raster image with the value of min�	 is 0.66 m and the value of min�  is 7.5 m in urban area. 450 

d) The potential VF raster image with the value of min�	 is 1 m and the value of min�  is 7.5 m in 451 
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urban area. (e) Watershed boundaries with a 1000 accumulated flow threshold. (f) Vertical features 452 

greater than 200 m and Mississippi levees from Nation Levee Database. (g) A zoom-in of the blue 453 

box in (f) presenting the extracted VF and the Mississippi levee. 454 

3.3 Mountain Area 455 

The mountain study area is a region of north Georgia and is about 20 by 40 km Figure 12 (a). The 456 

10 m DEM in this area was obtained from the Nation Elevation Dataset (NED) assembled by the 457 

USGS (Figure 12 (b)). This site is larger than the previous two, so batch processing the DEM was 458 

necessary. The area is divided into six titles and PyVF is run individually on each tile to obtain 459 

potential VF raster cells for the entire mountain area.  460 

The watershed boundaries are generated with an accumulated flow threshold of 10,000 (Figure 12 461 

(c)). The 1.5 IQR of the �ℎ  is about 50 m (Figure 14). This value is reasonable since the 462 

characteristics of mountain areas are substantially higher than the surrounding terrain and includes 463 

large slopes. The minimum �ℎ and � are set 50 m and 25 m (Figure 12 (d)). The VFs with a 464 

minimum length of 200 m and 1,000 m are shown in (Figure 12 (e) (f)). There are many short 465 

branches using 200 m as the minimum length. PyVF provides users with the option of customizing 466 

the minimum length to meet a variety of research objectives. 467 
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 468 

Figure 12. a) Location map of mountain area in Georgia. b) The DEM in mountain area. c) 469 

Watershed boundaries with a 10000 accumulated flow threshold. d) The potential VF raster image 470 

with the value of min�	  is 50 m and the value of min�  is 25 m in mountain area. e) Vertical 471 

features in mountain area longer than 200 m. f) Vertical features in mountain area longer than 1000 472 

m. 473 

3.4 Beach Area 474 

The fourth study area is a coastal area located in Virginia Beach (Figure 13 (a)). According to the 475 

10 m DEM supported by the NOAA (Figure 13 (b)), there is a natural barrier (i.e., sandy beach 476 

dune). Beach dunes are important for ecosystems habitats and coastal protection by reducing the 477 
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impact of extreme coastal hazards such as wave and storm surge (Ranwell and Rosalind, 1986; 478 

Roelvink et al., 2009; Van der Meulen and Salman, 1996).  479 

In this area, the 1.5 IQR of the �ℎ  is about 1.5 m (Figure 14). Since this area is small, the 480 

accumulated flow threshold used for extracting watershed boundaries is 100 (Figure 13 (d)) and 481 

the minimum �ℎ and � are set 1.5 m and 25 m (i.e., 2.5 cell size) (Figure 12 (c)). The VFs with a 482 

minimum length of 50 m are shown in Figure 12 (e). The longest VF is the beach dune. PyVF is 483 

shown as able to extract raised features from the beach area. 484 
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 485 

 486 

Figure 13. a) Location map of beach area in Virginia. b) The DEM in Beach Area. c) The potential VF raster image with the value of 487 

min�	 is 1.5 m and the value of min�	 is 25 m in Beach Area. d) Watershed Boundaries with a 100 accumulated flow threshold. (e) 488 

Vertical Features greater than 50 m. 489 
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 490 

Figure 14. Boxplot of the elevation differences (�ℎ) in low-gradient area, urban area, mountain 491 

area and beach area. Note the range of the y-axis varies among the plots. 492 

4. Discussion 493 

Since the extracted vertical features are required to be high enough polylines, the VF extraction 494 

method in this research combines two methods to achieve the requirement. They are the target 495 

recognition method and the target delineation method. The target recognition methods use the 496 

threshold of parameters �ℎ (i.e., min�	) to ensure the detected cells with high elevation difference 497 

(Tribe, 1992). After that, with the target delineation method based on the accumulated flow 498 

threshold (T) (i.e., target delineation) (Ai, 2007), the potential vertical feature cells can be 499 

converted to the potential vertical feature polylines. The values of these thresholds will affect the 500 

number of extracted VFs. In this section, the focus is to discuss the considerations when selecting 501 

thresholds for these parameters. Finally, the advantages compared to the previous method and the 502 

current limitation are elaborated. 503 
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The target recognition in this research applies an iterative increasing size moving window to detect 504 

each cell within the DEM range. This method is superior to previous methods of fixed size moving 505 

windows because the importance of each VF can be automatically assessed by the variable �ℎ and 506 

�. Compared with the fixed-size approach, the output VF height (�ℎ) identified by the moving 507 

window with the increasing radius (�) is closer to the real height, though it may need additional 508 

computing time. Also, the radius (�) could be regarded as the width of a VF. �ℎ and � can be 509 

considered as vertical and horizontal increments to calculate the slope of VFs. The four case studies 510 

presented highlight that the minimum values of parameter �ℎ and � can be determined based on 511 

the IQR and the resolution of DEM. They also prove that the min�	 has a high relationship with 512 

the type of terrain for a given study area. For instance, in the area with large elevation variations, 513 

such as the mountain region, a larger min�	  is used to filter out less significant VFs. On the 514 

contrary, in the low-gradient area, the smaller min�	 is more appropriate due to the minor land 515 

elevation variations and small surface slope.  516 

Since the watershed boundary delineation method effectively provides the location of ridges, it 517 

naturally serves to use the watershed boundary as VFs. The selection of the threshold (5) also has 518 

an impact on the VF delineation. If a large threshold is selected, less output watershed boundaries 519 

may cause the loss of significant VFs. If a small threshold is selected, there will be more watershed 520 

boundaries, and of course, the intersection of the watershed boundaries will also be significantly 521 

increased. Using a small threshold increases computation time, and many weak VFs are extracted 522 

and the thinned VFs have numerous spurs. This requires additional post-processing. Hence, the 523 

threshold selection should be an iterative process, from large to small, to determine an appropriate 524 

threshold.  525 

The work of Coggin (2008) and Bilskie et al. (2015) start from the watershed delineation and 526 

considers the watershed boundaries that meet three criteria by special parameters as significant 527 

VFs. The method greatly reduces the number of watershed boundaries and can warrant the 528 

importance of the extracted VFs (i.e., portions of the watershed boundaries). However, there is no 529 

weighting among the extracted VFs. In unstructured mesh design, VFs with close spacing may 530 

face trade-offs. The parameter �ℎ  can provide the vertically significant order of each VF. 531 

Additionally, the watershed boundaries are along the edges of the grid cell instead of the centroid. 532 

When the VFs are narrow, the nodes of triangular elements could be positioned on the surrounding 533 
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lower terrain by accident. The VFs extracted by PyVF are located along the center of raster cells 534 

to avoid careless element node placement.  535 

There are, however, some limitations in PyVF. First, VFs rely on the position of watershed 536 

boundaries. When potential VF cells and watershed boundaries cannot coincide, there may be gaps 537 

in the VFs that should be continuous. This condition requires post-processing to compensate. In 538 

addition, the accuracy of VFs extracted with PyVF will be affected by the quality of the DEM. 539 

PyVF is more effective if a quality DEM is available. Third, since PyVF applies some ArcGIS 540 

functions in the target delineation method, the users must have access to an ArcGIS license. The 541 

last limitation that needs to be overcome is to speed up PyVF. The computer system environments 542 

used to run PyVF for the four study is listed in Table 2. The running duration for the four areas 543 

were list in Table 3. In addition to computer performance, the running duration depends on the 544 

number of potential vertical features. In other words, an area of the same size with more VF will 545 

take longer. 546 

Table 2. Computer System Environment Parameters 547 

Number Item Parameter 

1 Operating System Window 10 

2 Memory 16.0 GB 

3 CPU Intel(R) Xeon(R) E5-1620 v3 @ 3.50GHz 

4 ArcGIS version 10.8 

 548 

Table 3. Running Duration for the four study areas. 549 

Study area Running Duration (h) Area (Km2) DEM Resolution (m) 

Low-gradient area 4 18×9 3 

Urban area 1 10×8.5 3 

Mountain area 8 40×20 10 

Beach area 0.4 4×1.5 10 

 550 

5. Summary and Conclusion 551 

In this paper, the problem of extracting VFs from DEM is presented. PyVF is written in Python to 552 

solve this problem using the target recognition and target delineation algorithm. The target 553 

recognition aims to extract the potential VF cells applying a circular moving window with an 554 



31 

 

iterative increasing size rather than a fixed size. The objective of the target delineation method is 555 

to convert the potential VF cells to VF polylines. The two main algorithms are mainly based on 556 

window size r, height parameter dh, and accumulated flow threshold T. Also, post-processing 557 

could be required for cleaning up VFs that are insignificant to the research objective.  558 

PyVF is employed to extract VFs in four different landform areas: low-gradient coastal area, urban 559 

area, mountain area, and beach area. The VFs such as roadbed, levees, mountain ridges, and beach 560 

dunes in these areas are delineated. According to different landforms and research objectives, the 561 

appropriate values of parameters are changeable. The results of the four study areas demonstrate 562 

automatic VF delineation from disparate DEMs. Our future work will combine the PyVF tool with 563 

a local mesh scaling algorithm to extend the delineation of VFs beyond the geometric-based 564 

approach to include flow properties.  565 
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